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ABSTRACT 

The analytical method of Ref.   1   for estimating stability derivatives, 

and  hence stability on course,  which combines Atbring's empirical modifi- 

cations of simplified flow theory with   low aspect-ratio wing theory,   is 

extended  to take   into consideration the effects on course stability of 

higher aspect-ratio fins  as well.    The method,   which had been applied   in 

the  earlier  report   to a  family of eight   hulls  of  0.5  block coefficient, 

is  tested  further  by application to eight Series  60 forms  differing   in 

block coefficient  as well  as   in beam,  draft,  and displacement — with and 

without  rudders;   to an extreme vee modification of a Series 60 model;  and 

to three other  forms — a Mariner Class model,  a destroyer,  and a hopper 

dredge.    Comparison with experimental  results  shows  that  the values of 

stability derivatives and   indices determined by  the analytical  method are 

of  the right orders of magnitude and   indicate correct trends.    Application 

to a  variety of ship forms  has  demonstrated  that   the method  can  predict 

relative effects of changes   in  t?>e geometry of a  ship form,  as well  as 

the  effects of  changes   in   skeg and rudder area. 

Keywords:      Hydrodynamics, Maneuvering, 

ControllabiIity 
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NOMENCLATURE 

profile area of wing or hull, ft3 

aspect ratio of wing 

beam, ft 

local beam, f^ 

lift coefficient based on profile area 

two-dimensional lateral added mass coefficient 
(sectional inertia coefficient) 

average C  over the hull 

total resistance coefficient of the hull 

force,   lb 

y      fu8   iH 
measured   lateral   force coefficient 

9 

H 

h 

h. 

acceleration of gravity 

maximum draft,  ft 

local draft,  ft 

maximum fin height,   ft 

moment  of  inertia of hull,   lb-ft-seca 

added moment of  inertia of entrained water  (see  text), 
lb-ft-seca 

Lamb's  coefficients of accession to  inertia 
lateral,  and rotational 

longitudinal, 

vii 
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lift, lb 

lift coefficient based on area ■* • H 

length, ft 

mass of hul1, slugs 

hull mass coefficient 

"H * kx m^       longitudinal added mass coefficient 

lateral added mass coefficient (see text) 

longitudinal virtual mass coefficient 

lateral virtual mass coefficient 

rotational adoed mass coefficient (see text) 

yawing moment, Ib-ft 

yawing moment coefficient 

virtual moment of inertia coefficient 

radius of turning circle, ft 

frlctlonal resistance, lb 

residual resistance, lb 

dimension less angular velocrty 

dimensionless distance along the pach of the center 
of gravity of the hull 

time, sec 

velocity of the center of gravity of the hull, ft/sec 
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x,y,z coordinate axes fixed  in  the hull with origin at 
the center of gravity 

x longitudinal  distance from LCG,  of center of  gravity 
of   lateral added mass,   ft 

x longitudinal  distance from LCG,  of center of  pressure 
^ at which  lateral  force    Y    acts,   ft 

x. assumed  longitudinal  distance from LCG,  of center of 
pressure of tail  surface or skeg,   ft 

x    ,  x. x-coordmates  of  stern  and bow,   respectively 
5      D 

Y lateral hydrodynamic force, lb 

,/ 

|ua M 
lateral hydrodynamic force coefficient 

ß yaw angle or drift angle 

6 rudder angle 

A displacement of hull, lb; also increment 

p mass density of the fluid, slugs/ft 

ox ,a stability indices 
s 

Subscripts (other than those in above definitions) 

f refers to high aspect-ratio fin (skeg or rudder) 

H refers to bare hull 

i refers to ideal fluid 

r refers to derivative with respect to r 

s refers to derivative with respect to s 

ß refers to derivative with respect to 0 

xi 



BLANK PAGE 



R-1035 

INTRODUCTION 

In an earlier report,    an analytical method was developed for es- 

timating the first-order stability derivatives  (static and rotary  lateral- 

force and yawing-moment  rates) which would  indicate the course stability 

and turning or steering qualities of ships.    The method was applied to 

the case of a  family of eight  hulls of the same  length and the same pris- 

matic and block coefficient,  but differing  in draft,   beam,and displacement 

The hulls were the 8^0 Series of  the Taylor Standard Series  type with the 

after deadwood  (faired-in skeg)   removed.    Experimentally measured   lateral 

forces and yawing moments,   from Davidson Laboratory  rotating-arm tests at 

different  turning radii, were available for these hulls and for three of 

the hulls with flat-plate skegs   in the place of the removed deadwood. 
ft 

Although the analytical  method   is based upon simple concepts com- 

bining simplified flow theory with   low aspect-ratio wing theory and using 
3 Albring's    empirical modifications  for viscid  flow,  good correlation was 

attained between the stability derivatives calculated by this method and 

those determined  from experimental  data.    However,  Albring's modification 

of the rotary moment rate  is a  function of prismatic coefficient and, 

since all  the hulls of the 840 Series have the same prismatic (0.5^),  this 

modification was not  fully tested.     It was decided,   therefore,  to extend 

application of  the prediction method  to hulls of other prismatic, with 

and without  skegs or deadwood aft,   for which experiments!   data were avail- 

able. 

Fortunately,  straight-course and rotating-arm model  tests have been 

concluded on eight members of the Series 60 family of ships,     so that the 

effects on stability of varying biock and prismatic coefficients,  beam. 

ic 2 
Results of several straight-course tests confirmed previous experience 

at Davidson Laboratory that entirely reliable static force and moment rates 
for straight-course motion can be obtained from rotating-arm data at suffi- 
ciently large turning radii. 

1 
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and draft — other form characteristics remaining constant — can be ascer- 

tained from the experimental measurements, for comparison with theoretical 

predictions. These forms were not altered, as were the Standard Series 

types, by removal of the after deadwood. Tests were made with and without 

rudder and propeller, and one model was tested with three rudders of dif- 

fering chord length.  In addition, the analytical method was applied to 

the following four forms: an extreme vee modification of a Series 60 ship, 

a mariner class vessel, and the widely different destroyer and hopper- 

dredge forms.  Consistent experimental techniques have been used in tests 

of these forms conducted in recent years at Davidson Laboratory. 

With the exception of the hopper dredge, all models had large areas 

of deadwood (faired-in skeg, including rudder) aft, with maximum height 

at the stern from extended keel line to load water line. The aspect ratio 

of the skeg, equal to the square of the maximum skeg height divided by the 

skeg area and doubled to take into account the free-surface effect, was, 

in all these cases, less than unity. The hopper dredge, on the other hand, 

had a skeg of small area at the stern, masked from the water surface by 

the broad bottom of the afterbody. The aspect ratio of this skeg, equal 

to the square of its maximum height divided by its area, was greater than 

unity. For this form, and for the Series 60 cases where the rudder was 

removed or rudder area was added, the effects of altering a body by adding 

or subtracting area having fin effect could not be treated by using low 

aspect-ratio wing theory. 

The method of Ref. 1 was therefore extended by including the tech- 

nique of Ref. 8 in studying the effect on ship behavior of adding or sub- 

tracting fins. The lift on the fin itself is calculated by using aerodynamic 

wing theory for wings of aspect ratio greater than unity. Then, by assuming 

that the interference between fin and body is negligible, as in the simpli- 

fied theory used in Ref. I, the changes in static and rotary force and mo- 

ment rates are computed. 

Comparison with experimentally derived stability derivatives and 

indices shows that the theoretically determined values are of the right 

orders of magnitude and indicate correct trends. The fact that the ana- 

lytical method has the ability to predict relative effects of changes in 
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the geometry of a ship form, in addition to the effects of changes in 

rudder and skeg area, makes it an acceptable working tool in designing 

ships for greater course stability.  It is useful not only as an augment to 

experimentation but also in planning an efficient program of model testing. 

This project was sponsored by the Office of Naval Research under 

Contract Nonr 263(57) and technically administered by David Taylor Model 

Basin. 
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THE  ANALYTICAL METHOD 

Assumed Stability Derivatives  for  Hulls 
Without  Oeadwood or  Fins 

In  the potential   flow theory  the hydrodynamic  force and moment  rate 

coefficients,  or stability derivatives,  of an elongated body of revolution 

without appendages are defined   for  the   linearized  region of smalt angles 

of attack and   large radii  of  rotation as: 

On straight course,  r    » |r ■ 0   , 

^H '  V 0 

Np = n^' - m/ = Ng (Hunk ideal moment) v». 
H 

In turn, around 0 = 0 # 

Y'    » 0 
rH 

N'    =  0 
rH 

(I) 

The notation   is  that of  the Society of Naval  Architects and Marine Engineers 

(see Nomenclature and  Fig.   I;   the subscript     H    refers   to bare hull).    The 

measured   lateral  force coefficient   is defined as 

and   its  derivative with respect   to    r'    as 

y      w /       #     / / \ 

where m  is the mass coefficient of the hull and m. 

(2) 

is the longitudinal 
o Q 

added mass coefficient.  Lamb,  considering the added mass term as a hydro- 

dynamic force, defines Y/«-ml«-k1m  where 
rH 0 

is the coefficient 
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of longitudinal accession to Inertia (Fig. 2).  Equations 1 are equivalent 

to those derived by Breslin  for a long slender body with tapered or 

pointed ends, from three-dimensional singularity distributions. 

In Albring's modification of potential flow theory for a body of 

revolution moving in a viscous and eddying fluid, the lift on the bare 

hull is no longer zero as in potential theory, but the force developed as 

by "oblique attack under an angle [ß] of a correspondingly shaped solid 

without effect of curvature," which acts at a distance x  from the center 
P 

of gravity.  In determining this lift force on a surface ship, Ref. 1 

follows Fedyaevsky and Sobolev  in identifying the bare hull of a ship 

(i.e., the ship without deadwood, ske , or any other area which has only 

fin effect) with a low aspect-ratio wing.  In this analogy the span of the 

wing is assumed to be double the draft of the ship, to take into account 
2 

the action of the free water surface. Tsakonas  shows that this "solid 

wall" method of accounting for free-surface effect is correct for moderate 

speeds when the influence of wave-making can be neglected. 

The dimensionless lift rate per unit lateral area of the hull is 

assumed as given by Jones' formula for a low aspect-ratio wing, derived 

from the consideration of elliptic load distributions along the chord and 

the span of a thin foil.  The Jones formula is 

Ük   _   TT _   TT   (rf] (3) 
dß     "2W~2\A/ 

The  total   bare-hull   lift   rate,   nondlmensiona1Ized  on  the basis  of area 

£ x H   ,   is  then 

On combining low aspect-ratio wing theory with Albring's empirically 

based formulas, the stability derivatives for a bare ship moving in a vis- 

cous   fluid are obtained as: 

On  straight  course,   r' =  l/R =  0   . 
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/ TTH 
The static force rate Y' - l' + D' - -r ♦ D' (5) ßH PH        o       £ o 

x /x \  TTH 
The  static nwment   rate N«     * Ng    "f "J^ ''ß    ~ ms  ~  m^ +\i/ T 

H li H 
(6) 

In turn,  around ß = 0  , 

The  total   rotary  force  rate         " - m' +  Y   /  =  - I m' +  mi I—r  LQ       (7) 
d r'      x   rH    \ 0    /     PH 

The rotary moment rate N'/ = - ™' J - \T)    ^-Q (8) 

The various terms are determined as follows: 

H/X ■ ratio of maximum draft to length of ship 

D   ■ drag coefficient at yaw angle ß = 0 , obtained by 
experiment or estimated from the Taylor Standard 
Series curves of resistance  . 

N ' 
ß.  ■ Hunk's moment rate in an ideal fluid, equal to the 

difference between the lateral added mass coeffi- 
cient  oi;;  and the longitudinal added mass cocffi- 
cient ml     of entrained water 

x   ■ distance from LCG of the center of pressure of 
"     lateral force, taken as the center of area of the 

hull profile (positive if forward of the LCG) 

m «m + mi  = virtual longitudinal mass coefficient 
x  o   1 3 

m ■  -— , where A  is ship displacement in lb 
0   g £ iaH 

2 

mj ■ kj m0  , where k1  Is Lamb's coefficient of longitudinal 
accession to inertia for an equivalent ellipsoid 
with ratio of minor axis to major axis equal to 
2H/1 

X 
o = half the prismatic coefficient  C  , following Albrinq 

T P 
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m        -    the   rotary added mass  of  entrained water 
acting at   the distance    x     from  LCG 

The  terms n^   ,  m     ,   and     x    are estimated  as   follows,  according   to  the 
2 13 procedure advocated  by Martin: 

ma 
m., ■ 

"      f   ^H 

where 

i **> 3 
m

a =  ^   2 " /        Cs   h  dK 

m    = ■:—    m2 z      k2 

k   ,   k      =     Lamb's  coefficients of accession   to   inertia,   lateral   and 
rotational,   for  an  equivalent   ellipsoid  (see  Fig,   2) 

x   ,   x.     =     x-coordinates   of  the  stern,   bow 
s       b 

h      =     local   draft  at   each  section 

C      =     two-dimensional   lateral   added-mass   coefficient,   determined 
at   each   section  from the  curves  on   two-dimensional   forms 
of   Lewis'   sections,   by  Prohaska'^  (see Fig.   3) 

Xb 

/      Cs  h2xdx 

x   =           where    x     is   positive   forward of   LCG 

/ x 
s 

C    h2dx 
s 

Assumed Stability Derivatives   for Hulls 
with  Large Areas  of  Deadwood Aft 

For  hulls with   large areas  of deadwood  or   low aspect-ratio skegs 

aft,   extending  to the water  surface at   the  stern,  and   including   rudders 



R-1035 

parallel to the center line (rudder angle 6=0), simplified theory assumes 

that there is no interference between the bodies and these surfaces, so 

that the effects of the skeg area are simply additive. The lift rate per 

unit skeg area is given by Eq.(3) and, as in Ref. 1, the lift is assumed 

to act at the after end of the skeg, at  x   the distance of the ship stern 

from the LCG.  Since the length of the deadwood, or skeg, plus rudder is 

small in comparison with the length of the hull, the distance between the 

stern and the actual center of pressure of the skeg area is a negligible 

part of the moment arm about the LCG. 

The increments due to deadwood, etc., to be added to the bare hull 

stability derivatives  given by Eq.(5)-(8), are (see Ref. 1) 

S - 4V T (9) 

';'--&)? aO-- irT (ID 

AN ;'--&)> (-*) 

where x  is negative 

As shown in Ref. 1, these formulas give essentially the same results as 

those obtained in the procedure suggested by Martin.   Mart In modif led 

the linearized equations of motion in the horizontal plane, given in 

Ref. 15. by including terms Involving tvo-dimens lonal lateral added mass 

at the stern to account for the sudden change of section of the hull and 

skeg at x 

The total values of the static and rotary force and moment rates In 

the case of hulls with large skeg area aft extending to the load waterline 

at the stern are: 

On straight course,  r' = ^/R = 0 . 

8 
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*;-"■;-<♦ (H^) T '",' 

In turn,  around ß =  0  , 

(15) 

N      =  -    m r z 
/      X      I    O S|  TTH 
z    1 "^      I*   )   I (16) 

Changes   in  Stability Derivatives  Due  to Adding or Subtracting Fins 
of Aspect Ratio Equal   to or  Greater  than  Unity 

In  the  case  of hulls   like  the  hopper dredge,  with very   little dead- 

wood or skeg area aft  (and that masked  from the water surface  by  the hull 

bottom),   a different   treatment   is  required.    The bare hull   stability deriv- 

atives are obtained   from Eqs.(5)-(8)   as  before,   but   the effect  on  the 

derivatives of adding area having  fin effect and an aspect   ratio which 

cannot  be considered   low is determined as   in Ref.   8 by  using aerodynamic 

wing theory applicable to wings of  higher aspect  ratio  ,   equal   to or greater 

than unity.     The   latter  theory   is also employed   in  studying  the effects of 

adding or  subtracting  rudder area   in  the  hull   cases with   large  deadwood aft. 

The dimensionless   lift   rate  per  unit  of fin area    A,     in  such case 

is 

w'-TJ: (,7) 

Because the skeg or rudder is below the hull bottom and does not extend to 

the water surface, it is assumed that there are no free-surface effects. 

Thus the fin aspect ratio AR,  is the ratio of the square of the fin span 

(maximum height  hf ) to the fin area Af . The increment or decrement to 

the static-lateral-force rate, nondimensionalized on the basis of area 

I   • H , will be 
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(^''(^^"'^(T^T) 
(18) 

("•). • 

where    |AYft\    < 0    when subtracting  fin area. 

Again  the assumptions  are made  that   interference  between   fin and 

body   is  negligible and that   the center of  pressure of  the  fin   is  at   the 

stern at a distance    x      aft  of the   LCG.     The other  stability-derivative s 
changes are then 

x 

(**)< ■ ^ {*% (19) 

X 

(-;')f--x (^)f uo) 

Although Eqs.(19)-(2l) are derived for fin area at the stern, they are, 

through substitution of the correct moment arm in place of x  , applicable 

also to added or subtracted fin area at the bow. 

In the case of a ship with small skeg of relatively high aspect 

ratio at the after end of the underwater hull, the stability derivatives 

Yg , Ng , (m - Y /), and N / are obtained from Eqs.(5)-(8), modified 

by Eqs.(l8)-(2I) with (AYfl)  positive.  When rudders are removed from hulls 

with large deadwood area aft, the stability derivatives are defined by 

Eqs.(l3)-(16), modified by Eqs.(l8)-(2l) with (AYg)   negative. 

The Stai I 1i ty Ind ices 

The criteria for inherent dynamic stability of a free body moving 

on straight course in the horizontal plane are the damping exponents ol 

10 
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and o2  In the solution 

ß-ßje1    + $3   e s     ,   r    -fje1     +rae
a 

of  the homogeneous   linearized equations of motion 15 

/m' -  Y'A     r' - m'ß    -  V'    ß I   x r   J y  s        ß 

nV  - N'/r'   - Np ß = 0 
z s         r                ß 

(22) 

Here    s ■ Ut/A   .     The damping exponents are given  by 

'1.2 
\  2  6 ILjJ ^ V   z ß V  r  # z  y  L r     ß    I x    r 7   ß 

2n    m 
z    Y 

(23) 

where   mx " "o + "^  •  v'rtua' longitudinal mass coefficient 

m = m + rru  ,  virtual lateral mass coefficient y   o   B  ' 

,  virtual moment-of-inertia coefficient 
/ 

n z 
= 

'o 
■ 

/ 
m 

o 

|     «4H 16 (assuming the radius of gyration is equal to   -r  ) 

moment of inertia of the ship 

b 
I   = k' ^ /  C hsxadx  (Ref. 13) 

moment of inertia of the entrained mass of water 

The derivatives,  Yg • NQ ' (m/ " Y//), and "'' » are defined for 

II 
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the various configurations as follows: 

Bare hull (no deadwood)   ^^-^ I "^      Eqs.(5)-(8) 

Hull with large dead-     ^y^ |y        Eqs. (l3)-( 16) 
wood and rudder 

Hull with small skeg      ^ W    ~       J"^—    Eqs.(5)-(8) plus 
  Eqs. (18)-(21) 

Hull with large dead-     w* . m Eqs.(13)-(16) plus 
wood, rudder removed     w ^^üä ) Eqs.( 18)-(21) 

The index o2   ,  obtained by using the minus sign in Eq.(23). is 

always negative. Therefore the stability of the motion depends on the sign 

of Oj  or its real part; the more negative ol   , the sooner an initial 

disturbance will damp out, and hence the greater the stability.  If r^ 

or its real part is positive, the motion is unstable and the hull cannot 

be kept on straight course without applying a corrective rudder. 

The stability criterion o1     is also an index of the turning quali- 

ties of a hull in turns that are not too tight, i.e. when nonl inearities 

can be neglected. A more dynamically stable hull will turn in a larger 

radius than will a less stable hull with equal rudder force.  Conversely, 

the more stable hull will require greater rudder force than the less stable 

hull to turn in a given radius.  On the other hand, an unstable ship, de- 

fined by positive o1   , may turn in a direction opposite to that called for 

by the applied rudder, in which case it will need a large force to bring 

it around. 

12 
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PRESENTATION AND DISCUSSION OF RESULTS 

In the appendices, lateral-force and yawing-moment coefficients 

and stability derivatives determined from experimental measurements are 

compared graphically with those computed by the linear theory of the pres- 

ent report.  Annotations pertaining to the appendices follow. 

840 Series Hulls 

In Appendix A are reproduced the table of particulars and charts of 

Ref. I for three Taylor Standard Series models, with deadwood removed and 

with flat-plate skegs added in lieu of deadwood. These models had been 

tested at Davidson Laboratory in 1959 and 1951. The tests were made at 

Froude numbers of 0.16 and 0.23; hence the assumption that wave-making 

effects can be neglected is tenable. 

Figure A-I shows the body plan of the parent hull and Fig. A-2 

the stern profile with skeg installed. Figure A-3 is a summary chart 

comparing the calculated V- , N« , Y'/ , N'/ , and a.  with values ob- 
P        P r r * 

tained   in   1959    from measurements on the 8^2 hull,   without  skeg and with 

three skegs of different  sizes.    The calculated and experimentally measured 

static  rates,    YQ    and    N«   ,  are   identical.    The calculated and experimen- 

tal  magnitudes of the rotary derivatives and  stability   index differ  slightly, 

but   the stability predictions err on  the conservative side. 

It   is  seen that   the analytical  method  predicts  the  trends   in  stabil- 

ity  derivatives with   increase   in  profile area.     This conclusion   is  confirmed 

by Figures A-4 and A-5  for  the 846 and 848 models,   although these models 

were  tested   in   1951   by experimental   techniques  not   quite consistent  with 

those of more  recent  years.     As  skeg area   is   increased and  extended  farther 

aft,   YQ    and     Y   /    become more positive,    N   $    more negative,  and    N«     less P r r p 
positive.     All   trends are   in  the direction of  greater course stability,   as 

indicated by  the progressively more negative value of    o^ 

13 



R-1035 

Series 60 Hulls 

In Appendix B are presented the new results for the eight Series 60 

models, with and without rudder and propeller. The forces and moments are 

for zero rudder angle and a Froude number of approximately 0.20. 

Table B-I notes the hull particulars and the various coefficients 

of added mass and center of pressure computed by the present analytical 

method. Table B-2 gives the stability derivatives estimated from theory, 

and also those estimated from a "least squares" fit of the experimental 

data.  In the latter procedure the force and moment coefficients are assumed 

to be of the following polynomial form: 

Y = F + m r 
y   o 

= c +c1e+csr
/+ C3ß2r' + c4ßr

/s + Cgß3 + Cgr'3   (24) 

Each model is designated by a sequence of three digits.  The first signifies 

change in hull; the second signifies presence, 1, or absence, 0, of pro- 

peller; the third signifies presence, 1, or absence, 0, of design rudder. 

The digit 2 or 3 in third place refers to rudder with larger or smaller 

chord, respectively, than the original rudder. 

For the models labeled (-,1,1), with rotating propeller and design 

rudder, Eqs.(l3)-(16) are used for the theoretical derivatives with 0=0, 

since the propeller revolutions are adjusted to obtain zero drag condition. 

The tests of Models 6,1,1 and 7,1,1 in both clockwise and counterclockwise 

turns showed practically no asymmetry in the data with change in angular 

velocity from negative to positive.  Therefore lift due to propeller opera- 

tion can be assumed negligible.  For models labeled (-,0,0), without pro- 

peller or rudder, Eqs . (13)-(16) are modified by Eqs.(l8)-(2l).  In these 

cases D   is the experimentally measured drag coefficient at zero yaw angle. 

Models 2,1,2 and 2,1,3 with rotating propeller and larger or smaller rudder 

chord, respectively, than the original 2,1,1 are treated by subtracting the 

lift due to the original rudder and adding that due to the replacement. 
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Appendix B   includes   typical   planforms  (Figs.   B-1,2,3)  and a plan 

of  the design   rudder   in   location   (Fig.   B-^).     Figure B-5   is a  summary chart 

for all  eight models, with and without   rudder and propeller,  showing analy- 

tically calculated and experimentally  derived  stability   index    ol     versus 

ship-mass  coefficient    m' a  2 C-B/A   .     Figure  B-6 shows     Oj     versus  rudder 

area  for  Model   2 with  rudders of varying  chord,   again comparing  theoretical 

values with  those obtained   from a "least  squares"  fit  of  the experimental 

data.    The  remaining  figures   (B-7  to B-40) are  graphs  of   lateral-force 

and  yawing-moment  coefficients  versus  yaw angle    ß    and angular  velocity 

r       for   individual   models,   showing  the experimental  data  and values  com- 

puted on  the  basis  of  the   linear  theory,   i.e.   first  order  variation with 

ß    and  r'   . 

The  correlation between   theoretical  and  experimental  derivative 

estimates   is  seen  to be good  for  the hulls with rudder and propeller, 

slightly   less  good   for the  hulls without   rudder and  propeller.     The dis- 

crepancies are  for   the most   part within  the experimental   error. 

Extreme Vee Modification 

Appendix C compares  the  theoretical and experimental  results  for 

an  extreme vee modification    of Series  60 Model   I   (Fig.   C-l),  which was 

developed at  the University of Michigan.    Table C-l  tabulates particulars 

of this hull   (Model  9), with and without  propeller and design  rudder,   the 

calculated added mass and center of pressure coefficients,  and the stability 

index    o1     as  computed from theoretical  derivatives and  from experimentally 

measured  rates.     Figures C-2 to C-5 are graphs of the   lateral-force and 

yawing-moment  coefficients  for models 9,1,1 and 9,0,0,   similar  to those 

for  the Series  60 hulls. 

While  the calculated static and  rotary   lateral   force derivatives 

apply as well   to the experimental  data,   the discrepancies  between calcula- 

ted and experimentally measured moment derivatives are   larger  than for the 

normal Series  60 forms.    However,   the contrary effects of   lower  static   in- 

stability and   lower  rotary stability,   predicted by theory,  appear to cancel 

each other   in  the calculations of the stability   index.    The experimental 

and theoretical  estimates of    Oj     are close. 

15 
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•t   is   suspected  that  because  of  the  extreme   fineness  at   the bow 

(the  bow sections  of  the Series  60 model   have been  pared   to fine vee   forms 

while  the  profile  remains   the  same),   there   is  some  vibration at   the  bow   in 

yawed motion.     Such  a  condition would  affect   the  measured   moments. 

Mariner   Class  Hull 

Appendix D  treats   the  Mariner   class   hull   (Table 0-1,   Fig,   D-1)   re- 

ported   in  Ref.   5.     After   that   note was  published,   however,    it  was  found 

that   the  calibrations  used  to  reduce   the  test data  were   in  error.    The 

data  have  since  been   revised,   with  correct   calibrations,   and  are  shown  on 

Figs.   0-2,3,^,   for   the  hull   without   propeller,   with   rudder   amidship. 

The  tests  had  been  conducted   on  the   rotating  arm at   Davidson   Labora- 

tory   in   1963.     The  model  was   run at   a  Froude number  around   0.20,   so that 

for   this  model,   also,   the  effects  of wave-making  can  be  neglected. 

The  charts   show that   the  theoretical  derivatives  obtained  by  using 

Eqs.(13)-( 16)   fit   the experimental   data  reasonably  well.     Table D-2  gives 

a  comparison  of  the  stability  derivatives  and   indices derived  here and  the 

results  of Ref.   16 as  obtained  by  an  oscillator   technique. 

Destroyer  Model 

Appendix E   presents   the   results   for   the  DD692 destroyer  model 

(Fig.   t-1,  Table  E-l),  with  twin  rudders  and  propellers,   tested  on  the 

rotating  arm at   Davidson   Laboratory      in   1963.    The  coefficients  of measured 

forces  and moments  at   three   turning  diameters   for   zero rudder  angle  and 

Froude number   of  0.155 are  presented   in  Figs.   E-2,3. 

Equations   (13)-(16)   are  used   for   the  theoretical   derivatives,   and 

it   is  assumed   that   the effects  of   the off-center   twin  rudders  at  zero angle 

and of  the  propellers are  negligible  additions   to  the effect  of  the  skeg 

at  the  stern.     The  calculated  static  rates  on straight  course   seem reason- 

able extrapolations  of  the  rotating-arm data.    The  calculated  rotary  rates 

are  close  to  the measured  slopes,   certainly within   the experimental   error. 

16 
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Hopper-Dredge Models 

The results for the hopper-dredge model (Fig. F-1 of Appendix F), 

under two displacement conditions, are presented in Figs. F-2,3I^I5. This 

model was tested on the rotating arm at Davidson Laboratory in I960, at 

Froude numbers of 0.12 and 0.20 for the heavy displacement case and 0.155 

for the I ight case. 

The theoretical derivatives shown on the charts were calculated 

from Eqs.(5)-(8) for bare hull, modified by Eqs.(l8)-(21) for the small 

skeg-plus-rudder dt the stern.  The pertinent characteristics of the models 

are given in Table F-1.  Table F-2 compares the theoretical values of 

stability Index ol     with those calculated from the measurements and re- 

ported In Ref. 7. 

Although the theoretical estimates are on the average 18% less than 

the experimental, both indicate an extremely unstable vessel. The theory 

and results of this report underline the recommendations of Ref. 7. viz., to 

increase the deadwood forward of the rudder stock and to increase the chord 

of the rudder aft for stability. 

COURSE STABILITY DEPENDENCE ON HULL GEOMETRY 

An analysis of the assumed expressions for ship lateral-force and 

yawing-moment derivatives will be made in the light of the results presented, 

to discover the major form-parameters on which course stability depends.  It 

Is well known, and further proof has been added here, that low aspect-ratio 

skegs or deadwood at the afterbody are essential for minimum stability.  It 

has also been demonstrated that Increasing skeg area aft by widening the 

chord of skeg or rudder improves the stability, and that removing area with 

fin effect at the stern lowers the stability.  But aside from such fin areas, 

how can one tell by the dimensions and body lines of a ship whether the 

design will lead to greater or less stability? The answer lies In the make- 

up of the various terms involved in Eqs.(5)-(16).  These will he examined 

now. 

For practical ships, the longitudinal coefficient of accession to 

17 
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inertia  kj  is close to zero, so that the longitudinal added-mass coeffi- 

cient  n^  is negligible.  The lateral and rotational coefficients of ac- 

cession to inertia,  k,  and  k', are approximately equal, and therefore 

mp  can be substituted for m  .  The virtual moment-of-inertia coefficient 
z 

n   is close to (m + ms)/\6   for the variety of hull forms treated here. 

In general, variations in  x   and  x  (the centers of pressure of the lift 

and lateral added mass, respectively) and in position of longitudinal cen- 

ter of gravity are minor in their influence on the stability derivatives 

of hulls with deadwood aft.  The lift coefficient varies inversely with 

length-draft ratio.  The less important drag coefficient depends, as is 

known, on block coefficient and beam-draft ratio, and hence on  m  , which 
o 

is a function of block coefficient and beam-length ratio, and on  jfc/H . 

The major factors influencing the derivatives and stability index a^     are 

thus seen to be m  , n^ , and  £/H . 

The dependence of o1 on * /i , which under Albring's assumption 

is equal to half the prismatic coefficient, is implicit in its dependence 

on  m  and  n^ .  The ship-mass coefficient is 

The lateral added-mass coefficient formula 

x. 
/   karr  r      s 

rn = -p— /   C  h  dx 

s 

b 
C 
5 

with  k2   ~   I,   and h =  H   ,   maximum draft,   for  almost   the  entire   length of 

commercial   and  naval   vessels,   can  be written  approximately as 

«VN^S (26) 

■if where     ^     = 7    /       C     dx   ,   an  average sectional   inertia  coefficient   for 

the  hulI . xs 

C        is   a   function of   section   beam-draft   ratio and   section-area  coefficient, 

depending  more heavily  on   the   latter   (see  Fig.   3).     Thus   prismatic,   which 

is  the  quotient  of  block  coefficient  by midship section-area coefficient, 

18 
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Is   involved   in  both    m      and tru   . 
o 2 

On substituting the approximations noted  above  in Eq.(23),   it  can 

be  shown  that     O!     is  some  function of   the   inverse of  (m    ♦  rrig)   £/H   . 

A graph of    c^     versus   (m' +  n^)  t,/H    for  the  stable hulls,  with   low as- 

pect-ratio skegs,   or deadwood  plus  rudder,   to the  stern,   shows  clearly 

that   the major  form factors  have been well  explored.    On  Fig.   k are  plotted 

the experimentally  derived  values  for hulls  tested   in recent  years at 

Davidson  Laboratory with consistent  experimental   techniques.     The hulls 

vary   in  block coefficient   from 0.50 to 0.80,   in   length-draft   ratio from 

1U.5  to  27.^0,   in   length-beam ratio from 6 to 9-^5,  and   in beam-draft 

ratio  from 2.50 to 3.28.     The average  sectional   inertia coefficients     C 

are  tabulated below: 

Model CB 

8^2 0.50 

0.60 

Series 60 0.70 

0.80 

Extreme vee 0.60 

Mar iner 0.61 

Destroyer 0.57 

s 

0.83 

1.02 

1.07 

1.16 

0.93 

0.92 

0.76 

The curve on Fig. 4 is represented by the formula 

^ - - [ (.; !"<) 1 ] (27) 

and is seen to fit the data very well.  By making use of Eqs.(25) and (26), 

course stability is shown to vary inversely as 

[ 2 CB ^ + < r 
19 
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which may be easily computed from the ship lines and with the aid of Fig. 3 

This relationship shows that stability will be increased for hulls with low 

aspect-ratio skegs to the stern by decreasing one or more of these three 

form factors:  block coefficient, beam-draft ratio, and average sectional 

inertia coefficient. 

CONCLUSION 

The analytical method of Ref. I for estimating force and moment 

rates in yawing motion and stability on course, which combines Albring's 

empirical modifications of simplified flow theory with low aspect-ratio 

wing theory, has been extended here to take into consideration the effects 

on course stability of higher aspect-ratio fins.  The method had been 

applied in Ref. 1 to eight 8k0  Series hulls, of 0.5 block coefficient and 

varying beam, draft, and displacement.  The hulls were Taylor Standard 

Series forms with the after deadwood removed, but three of the hulls had 

also been tested with low-aspect-ratio flat-plate skegs in the place of 

the removed deadwood.  The extended method has now been applied to 12 other 

ships:  six Series 60 forms of 0.6 block coefficient and varying beam, 

draft, and displacement; two Series 60 forms of 0.7 and 0.8 block; an ex- 

treme vee modification of a Series 60, 0.6 block form; and three other 

widely different forms — a Mariner Class ship, a destroyer, and a hopper 

dredge at two displacements.  All had large areas of deadwood aft, except 

the hopper dredge, which had a small skeg at the stern.  The Series 60 

cases without rudders, and the case of one model with rudders of larger 

and smaller chord, have also been treated, making 2h  cases in all. 

Good correlation is shown between the values of stability deriva- 

tives calculated by this method and those based on experimental measure- 

ments, despite the variety in ship design.  It has been shown that low 

aspect-ratio skegs or deadwood at the afterbody are essential for minimum 

stability and that additional skeg area or an extension of rudder area aft 

increases stability.  For the stable ship with large skegs to the stern, 

the major form factors influencing course stability are demonstrated to 

be the coefficients of ship mass and lateral added mass of entrained water 

and the length-draft ratio, or, as a corollary, the block coefficient, 

20 
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beam-draft   ratio,   and  average  sectional   Inertia coefficient.     The  function« 

al   relationship   Is  expressed  by  the empirical   formula 

3.6 

11        L <"-><"]   ^UcB|+*cJ 
The results of this report show that the values of stability deriv- 

atives and Indices determined by the analytical method are of the right 

orders of magnitude and indicate correct trends.  Application to a variety 

of ship forms has demonstrated that the method can predict relative effects 

of changes in the geometry of a ship form, as well as the effects of changes 

in skeg and rudder area.  The analytical method has thus been proved an 

effective tool to be used in designing ships for greater course stability 

and in planning an economical program of model testing. 

?! 
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APPENDIX A 

BkO SERIES HULLS 

(Reference   l) 
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TABLE A-I 

PERTINENT CHARACTERISTICS OF  THE  8^0 SERIES  HULLS   (Taylor Standard  Series) 

Model   No. 

Length I,   ft 

Beam B, ft 

Draft H, ft 

Displacement A, lb 

842 846 848 

2x. Prismatic  coefficient  C   (=       0/jfc) 
P 

Block  coefficient  CB 
D 

ICQ/I,   from bow 

B/H 

i/B 

*/H 

6.0 6.0 6.0 

0.870 0.870 0.691 

0.298 0.188 0.236 

48.40 30.50 30.50 

0.54 0.5^ 0.5^ 

0.50 0.50 0.50 

0.520 0.481 0.481 

2.92 4.62 2.92 

6.90 6.90 8.68 

20.13 31-90 25 ^2 

10.06 1595 12.71 

.020 .012 .017 

.960 .978 •967 

.885 •935 • 902 

Lamb's  Coefficients of Accession   to   Inertia  for  Equivalent  Ellipsoids 

Major  axis/minor axis,   1/2H 

ki   (longitudinal) 

k2   (lateral) 

k'   (rotational) 

Other  Physical   Characteristics 

mass   coefficient 

longitudinal   added-mass   coefficient 

lateral   added-mass  coeffficient 

rotational  added-mass  coefficient 

virtual   moment-of-inert la  coefficient 

m2 , 

n' . 

x/i.CG of   lateral   added mass   from LCG 

x /£,center of area of profile  from LCG 
P 

D'   (estimated drag  coefficient  at  0 = 0) 

1^5 •1^5 •115 

003 .002 .002 

129 .084 .103 

119 .080 .096 

-0165 .0141 .0132 

.110 .070 .070 

.091 .052 .052 

014 • 018 .014 

A-2 
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FIGURE A-3. COMPARISON OF CALCULATED AND EXPERIMENTAL 
STABILITY DERIVATIVES   AND INDiCES FOR 842 HULL WITH 
VARIOUS SKE6S 
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APPENDIX B 

SERIES  60 HULLS 

(Reference k) 
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TABLE   B-l 

PERTINENT  CHARACTERISTICS   OF  THE  SERIES  60 HULLS 

BodaJ M.»    2.1.1     2.1.2    2.1.3    3.1,1    M.l    5.1.1    6.1.1    7.1.1    8.1.1 

Length I,   ft   (LBP) 5 0 —•- 

Beam B,   ft 0-667 07\l* »    0833    0625    Oil1* •• 

Draft H.   ft 0267 *     0-2175 0.3t»5    0267    "" 

Displacement A.   lb 33-27 35-63   —   M - 56    31-19    29-10    «46-07    U\(sU    ««7  50 

Prismatic coefficient. 
C    ' 2K /I 0-61^   »    0616    0.61'»    0-713    0 807 

P o 
Block coefficient  CB 0-6 •-    0-7        0-8 

LCG/t  from bow 0-515  ——    0-505    0 '«75 

B/H 2-50 2-68 »»    3-12      2.3'*      3-28      2-07      268      2 68 

£/B 7-5 7-0        •-   6-0        8-0 7-0 7-0        7-0        7 0 

t/H 18-75 »    23-00     \k.j0    18-75  •"- 

Rudder span,   ft 0-200  ^   0.16^    0-258    0-200    0 200 

Rudder chord,   ft 0-105 0-105    0-167    O-OBO    0105     — 

Lamb's  Coefficients of Accession  to   Inertia  for Equivalent  Ellipsoids 

Minor axis/major axis, 
2H/£ 01067  ^ 0-0870 0-0690 0-1067  •• 

ki    (longitudinal) 0022 -*- 0-019    0-033    0022 — 

kp   (lateral) 0-957  •- O.968    O-SkO    0-957     *- 

k'   (rjtational) 0-875 •-  0-903    0-820    0-875    *- 

Other  Physical   Characteristic s 

m'.mass coefficient 0-160    0-17!        •-    0-200    0150    0171     0-171     0-200    0-229 
o 

m1 , longitudinal   added- 
1 mass coefficient 0003     0 00k        •-   0 OOU    0003     0 00U    0-006    OOOU    0 005 

m', lateral   added-mass 
a  coefficient 0.171     0170        «*-   0169     0. 172     0138    0-220    O-lBO    O.^ 

m',rotational   added-mass 
z  coefficient 0153    0-152        •-   0-15!     0\Sk    0127     0-192    0165    0175 

n'.vlrtial  moment-of- 
2 inertia  coefficient 0 0213 0 0219     ^   0-0237 0-0206 00202  00239 0-0237 0-0271 

x/£,    CG of   lateral 
added mass  from LCG O-OM)    00l»9       »-   0-0U8    OO^    O-O^B    0.0^9    0-039    0 005 

x  /£,center of  area of 
p      profile  from LCG 0 028 •-   0.033    0-028    0-026 -0016 

0'(estimated drag  coef- 
ficient at B=0) 0015     **   0-017    0014    0.017    0-015    0-019   0-021 

B-2 
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TABLE  B-2 

STABILITY DERIVATIVES   FOR  THE SERIES   60 HULLS 

and Prope lie r* 

V •Le 

% 

X ■Y;' 

";• 

YB 
0.255 0-305 

Hi 0110 0095 

m; - Y;' 
0.01*0 O.OBI 

";• 
-0080 -0.070 

Ol -0.57 -0.52 

a) Models with  Rudder 
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APPENDIX C 

EXTREME VEE MODIFICATION OF SERIES 60 MODEL  1 
DEVELOPED AT THE UNIVERSITY OF MICHIGAN 

(Reference k) 

C-1 
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TABLE C-l 

PERTINENT CHARACTERISTICS OF THE EXTREME VEE MODIFICATION 
OF  SERIES 60 MODEL  1 

Model                                                                                             9.1.1                    9.0,0 

Length I, ft 5.0  •- 

Beam B, ft 0.667   

Draft H, ft 0.267   

Displacement A,  lb 33.10   

Prismatic coefficient  C    = 2x A 0.61U   
p o 

Block coefficient C_ 0.6   
D 

LCG/A,  from bow 0.511   

B/H 2.50   

//B 7.5   

jfc/H 18.75   

Rudder  span, ft 0.200 0 

Rudder chord, ft 0.105 0 

Lamb's Coefficients of Accession to  Inertia for   Equivalent   Ellipsoid 

Minor  axis/major axis,  2H/;, 0.107   

kx   (longitudinal) 0.022   

ks   (lateral) O.957   

k"  (rotational) 0.875   

Other  Physical Characteristics 

m1, mass coefficient 0.159 ■• o 
m1,   longitudinal  added-mass coefficient 0.003 ■ 

m1,   lateral  added-mass coefficient 0.156 « 
to 

m',  rotational added-mass coefficient 0.1^3 * 

n',  virtual  moment-of-inertia coefficient 0.019 • 

x/l,   CG of lateral   added mass from LCG 0.022 m 

x A»  center of area of profile from LCG 0.027  • 
P 

0'  (estimated drag coefficient at ß = 0) 0.017 > 

a , calculated from theoretical  derivatives -0.62 -0.17 

a .  calculated from experimental  rates -0.55 -O.I7 

C-2 
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APPENDIX D 

MARINER CLASS HULL 

(Reference 5) 

D-l 
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TABLE D-l 

PERTINENT CHARACTERISTICS OF THE  MARINER CLASS MODEL 

Length    i   ,   ft   (LWL) 5.0 

Beam B,   ft 0.731 

Draft H  ,   ft   (mean) 0.236 

Displacement    A   ,   lb 32.6 

Prismatic coefficient,  C    = 2x /£ 0.620 
P o 

Block coefficient CB 0.607 

LCG/i ,   from bow 0.52U 

B/H 3.10 

Ä/B 6.8^ 

VH 21.19 

Lamb's  Coefficients of Accession to  Inertia  for  Equivalent  Ellipsoid 

Minor axis/major axis,  IW/l 0.09^ 

1^   (longitudinal) 0.02 

Ic,  (lateral) 0.96 

k'   (rotational) 0.89 

Other  Physical Characteristics 

m', mass coefficient 0.177 
o 

m'     longitudinal   added-mass  coefficient 0.003 
i 

m1     lateral  added-mass  coefficient 0.136 
2 

m'     rotational  added-mass coefficient 0.126 
z 

n' virtual moment-of-inertia coefficient 0.019 
2 

X/JK,  CG of   lateral  added mass  from LCG 0.066 

x /£,  center of area  of  profile  from LCG 0.058 
P 

D'     (estimated drag  coefficient  at  ß = 0) O.Ol'* 

D-2 
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TABLE D-2 

STABILITY DERIVATIVES FOR THE MARINER CLASS MODEL 

(Without  Propeller) 

Theoretical Experimental 
Estimate" Range""   (Ref.16) 

Y' 0.310 0.295 to 0.218 

N' 0.068 0.066 to 0.122 
P 

^ 0.065 0.066 to 0.055 

'V' -0.059 -0.050 to -0.037 

^ =  «ateral added-mass 0     6 Q  ]]k to Q  ]5] 
coefficient 

m' 
n' - -^7 = added moment-of-  0.008 0.007 

inertia coefficient 

a1 -O.U9 -O.U2 (best) 
-0.16 (average) 

Also, as shown on the charts, a reasonable fit 
to the Davidson Laboratory rotating-arm experi- 
mental data. 

Oscillator results nondimensionalized according 
to the convention adopted in the present paper. 

0-3 
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APPENDIX E 

DESTROYER MODEL 

(Reference 6) 
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TABLE E-1 

PERTINENT CHARACTERISTICS OF THE 0D692 DESTROYER MODEL 

Length £ , ft 5-710 

Beam ö, ft 0.602 

Draft H , ft 0.208 

Displacement A , lb 25.22 

Prismatic coefficient, C = 2x /£            0.6^3 
P o 

Block coefficient,  CD 0.566 
D 

LCG/£   ,   from bow 0.522 

B/H 2.90 

VB 9.U5 

i/H 27.^0 

Lamb's Coefficients of Accession  to   Inertia  for  Equivalent  Ellipsoid 

Minor  axis/major axis,   IH/l 0.073 

kj   (longitudinal) 0.015 

kg   (lateral) 0.972 

k'   (rotational) 0-920 

Other  Physical   Characteristics 

m',   mass  coefficient 0.119 
o 

m'      longitudinal  added-mass  coefficient 0.002 
i 

m'      lateral  added-mass coefficient 0.087 
s 

m'     rotational  added-mass  coefficient 0.082 
z 

n1  virtual moment-of-inertia coefficient      0.0122 
z 

X/JK   ,   CG of   lateral  added mass   from LCG 0.070 

x /£,   center of area of  profile  from LCG 0.05^ 
P 

0',     drag coefficient  at   e =  0,   U = 2.1   ft/sec     0.017 

a       stability  index -O.76 

E-2 
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APPENDIX F 

HOPPER-DREDGE MODELS 

(Reference 7) 

F-l 
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TABLE F-1 

PERTINENT CHARACTERISTICS OF  TWE HOPPER-DREDGE MODEL 

Heavy Light 

M33 U.167 

0.721 0.721 

0.299 0.208 

1*1.65 32.08 

0.727 0,QkO 

0-717 0.820 

0.500 0.512 

2.U15 3.^1 

6.00 5.78 

Hi.51 20.00 

Condi tion 

Length  I,  ft  (LWL) 

Beam B. ft 

Draft  H,  ft 

Displacement  A,   lb 

Prismatic coefficient,  C    - 1% /1 
P o 

Clock coefficient  C 
D 

LCG/J^,  from bow 

B/H 

ä/B 

I/W 

Lamb's Coefficients of Accession to  Inertia for   Equivalent   Ellipsoids 

Minor axis/major  axis,  2H/^ 0,138 0.100 

kj   (longitudinal) 0.033 0.020 

k2  (lateral) 0.936 O.96O 

k'  (rotational) 0.815 O.885 

Other Physical  Characteristics 

m'» mass coefficient 
o 

m',   longitudinal   added-mass coefficient 

m',   lateral  added-mass coefficient 
s 

m',  rotational  added-mass coefficient 

n'» virtual  moment of   inertia 

x/l,   CG   of   later!  added mass  from LCG 

x /^.  center of area of profile from LCG 

D'    (drag coefficient  at  ß = 0) 
o 

0.239 0.28U 

0.008 0.006 

0.237 0.171 
0.207 0.158 

0.0315 0.0311 
0.021 0.013 
0.016 0.01^ 

0.025 0.028 

F-2 
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TABLE F-2 

STABILITY   INDEX    ol     FOR THE HOPPER-DREDGE MODEL 

Condition 
Model Speed 

ft/sec 
Theoretical 
Estimate 

Calculated from 
Measurements  (Ref.7) 

Heavy 2.39 

1.^0 

+0.83 

+ 0.83 

+ 0.89 
+ i.(y* 

Light 1.80 + 0.60 +0.82 
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